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Abstract: Generative adversarial networks have emerged as the primary candidate for generative machine 

learning. With the recent development of noisy intermediate-scale quantum devices it is pertinent to explore the 

potential advantages of quantum generative adversarial networks (QGANs). Here, we examine a significant 

challenge faced in previous implementations of a QGAN. Specifically, we propose a new method of 

dimensionality reduction of MNIST handwritten digits such that they could be encoded in a limited number of 

qubits. Rather than applying suboptimal principal component analysis, we employ a classical autoencoder to 

perform the required dimensionality reduction. We demonstrate this augmented QGAN still learns the 

underlying probability distribution while generating images qualitatively superior to previous QGANs.  

Accompanying code for this paper is available at https://github.com/hillspen/qgan.  

 

 

1. INTRODUCTION 

1.1 Motivation 

Generative adversarial networks (GANs) are deep 

neural networks capable of learning the distribution of 

a real dataset [1]. This is achieved by training two 

independent networks, the generator and discriminator, 

in competition with one another [2]. The discriminator 

aims to classify data as real or fake while the generator 

attempts fool the discriminator by creating fake data 

that mimics the real distribution [3]. Though the 

discriminator is exposed to real data as it learns to 

classify, the generator learns solely via its 

correspondence with the discriminator [2]. 

Mathematically, GAN training aims to minimize 

 

min
𝐺

max
𝐷

{𝐸𝐱~𝑝data[log𝐷(𝐱)] +

𝐸𝐳~𝑝(𝐳)[log(1 − 𝐷(𝐺(𝒛))]}
, (1) 

 

where 𝐷(𝐱), 𝐺(𝐳) represent the parametrized 

discriminator and generator respectively. Although 

GANs have shown great promise in fields such as 

photorealistic generation and image translation, they 

are computationally expensive and often limited by 

training time and instability [4]. Quantum machine 

learning offers a potential solution to this problem. 

Quantum generative adversarial networks (QGANs) 

leverage the probabilistic nature and high-dimensional 

parallel processing of quantum computing to achieve 

significant improvements [5]. Specifically, when the 

real dataset is both high-dimensional and purely 

classical, QGANs using quantum processors for the 

generator and discriminator can achieve an exponential 

computational advantage over classical GANs [6]. 

QGAN architectures have been designed and tested on 

quantum hardware, using IBM-Q quantum processors, 

for generating images akin to the MNIST dataset of 

handwritten digits [4]. Previous QGANs have been 

trained on MNIST, achieving a Hellinger Distance of 

0.1951 when 10 parameters each were used for the 

generator and discriminator respectively [4]. This 

result was comparable to a classical GAN of 199 

trainable parameters, a 94.98% reduction in parameters 

for a similar quantitative performance [4]. 

Within the field of image generation, the most 

important metric of success is whether generated 

https://github.com/hillspen/qgan


images appear real to the human eye. Poor generated 

image quality was the most significant problem of the 

QGAN implemented by the authors of [4]. This work 

used PCA to reduce input data from a dimensionality 

of 784 to 4 for qubit encoding. It is difficult to 

downscale this dramatically while maintaining fidelity 

[7]. In fact, the downscaling required to accommodate 

limited qubits has so far removed any potential 

quantum advantage [8]. It has been shown, both 

theoretically and experimentally, that these limitations 

make PCA a suboptimal dimensionality reduction tool 

[7]. 

1.2 Problem Definition 

The goal of this project is to improve the quality of 

generated images by investigating an alternative 

downscaling technique and implementing it within a 

QGAN architecture. It is essential that this new 

method does not prevent the QGAN from learning the 

distribution of the real data. By successfully training a 

QGAN to generate images of similar quality to those 

from the MNIST dataset, the efficacy of these 

networks can be further demonstrated. 

 

2. METHODOLOGY 

This section will describe the various elements of our 

project, emphasizing the aspects that improve on 

previous work. Figure 1 shows an overview of the 

architecture of the implemented QGAN. 

2.1 Quantum Circuit 

The quantum circuit is composed of the encoding 

gates, generator, discriminator, and swap test. The 

encoding gates are Ry gates that rotate a qubit by an 

angle, 𝜃 = arcsin⁡(√𝑥), which corresponds to a 

normalized pixel value x. This allows the quantum 

circuit to take classical data as input. The generator 

and discriminator are each created with 4 qubits and a 

series of Ry and Ryy gates. Their architectures were 

Figure 1: Overview and architecture of the implemented QGAN. A classical autoencoder was trained to downscale, then regenerate, MNIST 
handwritten digit images. It is then split into an encoder and decoder. The encoder is used during the training procedure to provide real data to the 
discriminator. The decoder is used following training when the generator creates artificial handwritten digits. The entire quantum circuit for both 
processes is outlined at the bottom where all parameters are optimized during training. 
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designed and justified in previous work and are made 

similar in complexity so that they can evenly compete 

until the generator converges. They are both designed 

to output on all 4 qubits, so they can be compared 

using a swap test in the final section of the quantum 

circuit. Here a series of controlled swaps directly 

compares the similarities between output states, which 

is quantified by the expectation value of the ancillary 

qubit. The generator and discriminator are therefore 

trained to approximate the real data distribution in 

parallel, however the generator does not have direct 

access to that data which ensures the uniqueness of its 

output. This approach is unique to QGANs and 

significantly differs from the traditional GAN 

approach where the discriminator classifies received 

data as real or fake. For more information about the 

quantum architecture used, see [4]. 

PennyLane was used to simulate the QGAN’s quantum 

circuit. Previous work used IBM’s Qiskit to develop 

the quantum circuit; however, PennyLane can interface 

with machine learning libraries such as TensorFlow 

and PyTorch. This implementation is better suited for 

future quantum machine learning investigations. 

2.2 Dataset and Dimensionality Reduction 

A subset of the MNIST handwritten digit dataset was 

used to train the QGAN model. Each image is 

represented by a 28x28 array with all indices between 

0 and 1. However, training a QGAN to output 784 

values would require an infeasible number of qubits 

for current quantum hardware, necessitating 

dimensionality reduction of the original images. We 

refer to the reduced representation as the latent vector 

of the image. As previously implemented using PCA, 

the latent vector is generated by the QGAN, then the 

pixel values of the generated images are constructed as 

linear combinations of the latent vector [4]. 

2.3 Autoencoder 

Autoencoder neural networks leverage their inherent 

nonlinearities to enable more sophisticated 

dimensionality reduction at the expense of complexity. 

The top of Figure 1 shows such a network, where the 

first half encodes the input into a low-dimensional 

space and the second half decodes the latent 

representation into an inexact copy of the original 

input. The input and target of an autoencoder are 

identical. The QGAN is trained to generate 4-

dimension latent vectors that can be decoded into a 

784-length vector representing the pixel values of a 

handwritten image. The complete system is a hybrid 

classical-quantum network that involves the encoder, 

the QGAN for training, and then the decoder for 

inference. 

 

3. RESULTS AND DISCUSSION 

First, the trained autoencoder was compared 

qualitatively against the PCA algorithm. MNIST 

images were reduced to four-dimensional vectors and 

then returned to the original image using the reverse 

algorithm. As can be seen in Figure 2, the autoencoder 

achieves superior qualitative results compared to the 

PCA algorithm. 

Figure 2: sample MNIST images reduced and inverted using an 
autoencoder versus the PCA algorithm 

The QGAN was trained using MINST images reduced 

by the autoencoder. Testing aimed to verify model 

learning was preserved using this reduction technique 

and that generated samples were qualitatively superior. 

To verify the QGAN was learning the underlying 

probability distribution independent of the 

autoencoder, only images labelled with “3” or “8” 

were provided as training data. Thus, if the QGAN 

generates only threes and eights it can be concluded 

that it has properly trained and is not relying on the 

autoencoder for novel generation. 

Images generated by our QGAN are shown in Figure 

3. It is clear our results are of a higher quality 

compared to the images generated by [4]. Our model is 

similarly qualitatively superior to other state-of-the-art 

quantum generative adversarial networks.  

Figure 3: results of [4] above samples generated by our QGAN. Note that 
[4] trained its QGAN on the subset {4, 6, 9} compared to {3, 8} 



4. CONCLUSIONS AND FUTURE WORK 

This paper investigated a hybrid quantum-classical 

implementation of a GAN. By taking advantage of the 

superposition and entanglement that is inherent to 

quantum circuits, the proposed model requires 

significantly fewer trainable parameters than a 

similarly capable classical GAN. In this paper, the 

necessary dimensionality reduction was implemented 

with a classical autoencoder, which was shown to 

outperform previous results that used principal 

component analysis. The MNIST handwritten digit 

dataset was used in training, with the final generated 

images appearing to be very similar to the training 

samples. 

Future work should investigate data encoding 

approaches that leverage superposition to increase the 

size of the latent vector while still using the same 

number of qubits. Amplitude embedding coupled with 

a normalizing layer in the autoencoder is an area of 

particular interest that was briefly attempted but 

warrants further investigation. Additionally, while this 

implementation used the MNIST dataset, 

dimensionality reduction using an autoencoder is 

theoretically invariant to the dataset and should be 

practically implemented on more complex problems.  
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